Experiments on chromosome elimination in the gall midge, Mayetiola destructor.
نویسنده
چکیده
Cleavage in Cecidomyidae (Diptera) is characterized by the elimination of chromosomes from presumptive somatic nuclei. The full chromosome complement is kept by the germ-line nuclei. The course of cleavage in Mayetiola destructor (Say) is described. After the fourth division two nuclei lie in the posterior polar-plasm and become associated with polar granules, and fourteen nuclei lie in the rest of the cytoplasm. All the nuclei possess about forty chromosomes. During the fifth division the posterior nuclei do not divide and the polar-plasm becomes constricted to form primordial germ cells (pole cells). The remaining fourteen nuclei divide and lose about thirty-two chromosomes so that twenty-eight nuclei are formed containing only eight chromosomes. These are the presumptive somatic nuclei. During subsequent divisions the pole cell nuclei retain the full chromosome number; these divisions occur less frequently than those of the somatic nuclei. Experiments were performed on early embryonic stages to elucidate the properties of the posterior end during the time that chromosome elimination was taking place from the presumptive somatic nuclei. Ultraviolet irradiation, constriction, and centrifugation techniques were used. The polar granules are concerned with the non-division of the germ-cell nuclei during the fifth division, since if the granules are dispersed by centrifugation, or if nuclei are prevented by constriction from coming into contact with them before the fifth division, all the nuclei divide with chromosome elimination at this division. With each technique it is possible to obtain embryos possessing germ cells with only eight chromosomes in their nuclei. Individuals possessing germ-line nuclei with only eight chromosomes were allowed to develop to maturity. Abnormalities were confined to the germ cells only and were the same regardless of which technique had been used to produce the deficient germ line. An ovary containing germ-cell nuclei with only eight chromosomes is unable to form both oocytes and nurse cells. A testis containing germ-cell nuclei with only eight chromosomes is unable to form spermatocytes but cells which come to resemble gametes are formed. Experimental males and females are both sterile. The results are discussed in relation to other experimental work on Cecidomyidae and the following main conclusions are reached: (a) the polar granules are responsible for preventing an irreversible loss of chromosomes from the germ-cell nuclei by preventing the mitosis of these nuclei during the fifth division; (b) the chromosomes normally retained in the germ line are required for gametogenesis, particularly for oogenesis. The significance of chromosome elimination is discussed.
منابع مشابه
Wheat Mds-1 encodes a heat-shock protein and governs susceptibility towards the Hessian fly gall midge.
Gall midges induce formation of host nutritive cells and alter plant metabolism to utilize host resources. Here we show that the gene Mayetiola destructor susceptibility-1 on wheat chromosome 3AS encodes a small heat-shock protein and is a major susceptibility gene for infestation of wheat by the gall midge M. destructor, commonly known as the Hessian fly. Transcription of Mayetiola destructor ...
متن کاملMassive Shift in Gene Expression during Transitions between Developmental Stages of the Gall Midge, Mayetiola Destructor
Mayetiola destructor is a destructive pest of wheat and has six developmental stages. Molecular mechanisms controlling the transition between developmental stages remain unknown. Here we analyzed genes that were expressed differentially between two successive developmental stages, including larvae at 1, 3, 5, and 7 days, pupae, and adults. A total of 17,344 genes were expressed during one or mo...
متن کاملGall Midge Olfaction and its Role in Speciation
With the swede midge (Contarinia nasturtii) as our main model species, we study two types of olfactory cues that are of importance for gall midges: 1) the pheromones emitted by the female to attract the male; 2) and the host plant volatiles that the females use when finding a host for oviposition. We found that both the blend of compounds and the enantioisomeric form are important for male attr...
متن کاملThe gut transcriptome of a gall midge, Mayetiola destructor.
The Hessian fly, Mayetiola destructor, is a serious pest of wheat and an experimental organism for the study of gall midge-plant interactions. In addition to food digestion and detoxification, the gut of Hessian fly larvae is also an important interface for insect-host interactions. Analysis of the genes expressed in the Hessian fly larval gut will enhance our understanding of the overall gut p...
متن کاملUnbalanced Activation of Glutathione Metabolic Pathways Suggests Potential Involvement in Plant Defense against the Gall Midge Mayetiola destructor in Wheat
Glutathione, γ-glutamylcysteinylglycine, exists abundantly in nearly all organisms. Glutathione participates in various physiological processes involved in redox reactions by serving as an electron donor/acceptor. We found that the abundance of total glutathione increased up to 60% in resistant wheat plants within 72 hours following attack by the gall midge Mayetiola destructor, the Hessian fly...
متن کاملAvirulence Effector Discovery in a Plant Galling and Plant Parasitic Arthropod, the Hessian Fly (Mayetiola destructor)
Highly specialized obligate plant-parasites exist within several groups of arthropods (insects and mites). Many of these are important pests, but the molecular basis of their parasitism and its evolution are poorly understood. One hypothesis is that plant parasitic arthropods use effector proteins to defeat basal plant immunity and modulate plant growth. Because avirulence (Avr) gene discovery ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of embryology and experimental morphology
دوره 24 2 شماره
صفحات -
تاریخ انتشار 1970